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A solution is given in general  form,  with end-effect taken into account, for the problem con- 
cerning the motion of a v iscoplas t ic  medium. 

We consider a viscoplast ic  medium having the rheological  equation 

The distribution of velocit ies at the entrance to a cyl indrical  tube is given in cylindrical  coordinates 

V z = • (r) for z = 0 (2) 

along with the no-sl ip  condition on the tube wall 

V z = 0 for r = R, (3) 

where R is the tube radius. 
sume that 

Conditions (2) and (3) se rve  as boundary conditions for  the problem. We a s -  

v, = v~ = O, (4) 

vz = v~ (r, z) (5) 

and that the medium is incompress ib le  

+ 0 =  ~b. 

We introduce Eq. (1) into the equation of motion of a continuous medium 

div H ---- p (a - -  F) 

and represen t  the result ing equation in t e rms  of cylindrical  coordinates,  taking Eqs. (4), (5) into account 
and neglecting body forces .  As a resul t  we obtain 

(6) 

OP 
- -  O, ( 7 )  

&p 

( @ )  0 2% Oh OP = 0  ' (8) 
2 ~1+ 0-~ % h ~ Oz % Or 

0 (r%) + I 0 (r%) - -  % +  % - - -  = 0, (9) 
2 n+ -gr O-T Oz 

where 
Ova. I Ov z 

ezz == ~ z  ' erz ~ --2 --Or 

We neglect  the product of the der ivat ives  with respec t  to z by ezz, (0/Sz)erz,  and 3h/0z. In addition 
Eq. (8) gives 0P/Or  = 0, and upon taking account of Eq. (7), we obtain 
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P = P (z). 

We t r a n s f o r m  Eq. (9), a s suming  that in t e r m s  containing erz ,  h = 
h = -  0Vz/Or (no s l ippage at the wails) .  

Equation (9) then takes  the f o r m  

Xl Or \  Or/  r Oz + 2  

We eonsider  h to be  constant,  taken equal to a mean  value he. 

(z0) 

0Vz/0rl, and since OVz/0r < 0, then 

% )  O 
n + h F  ~z  e===o. 

Equation (11) then assumes the form 

(11) 

q ~Tr r O r /  r 

where  i = -OP/Oz  (p iezometr ie  slope) is considered to be constant.  

We obtain, finally, 

OZ 2 -1- ~1 r Or 2 ~- ~1 Or 
T o 

(12) 

We introduce the notation 

(13) 

Equation (12) is reducible to the form 

A 22V~z- 02~z OVz 
Oz 2 + r OP + - - -Or  = a (r) (14) 

with the boundary conditions (2) and (3). 

To solve Eq. (14) we apply the Laplace transform 
c~ 

F (s) = j' exp (-- sz) f (z) dz, 
o 

which enables us to pass  in Eq. (14) f r o m  the space  of or iginals  f(z) to the space  of t r a n s f o r m e d  functions 
F(s),  with the boundary condition for  z, namely  Vz(r , 0) = r now becoming an initial  condition, auto-  
mat ica l ly  included in the t r a n s f o r m e d  equation. 

The t r a n s f o r m  of Eq. (14), unlike the or iginal  Eq. (14), is now an o rd inary  different ial  equation. 

The t r a n s f o r m  of the function vz(r ,  z) is  

U (r, s) = j exp (--  sz) v~ (r, z) dz 
U 

or, more concisely, 

and the transform of its derivative 

o r  

g(r, s )o - -Ov , ( r ,  z), 

sW(r ,  s)--sv~(r,  0)-- Ov~(r' O) 02v, 
0 - - 0  - -  

Oz ~z 2 

~2U z 
s~U(r, s ) - - s ~ ( r ) o  c - -  

Oz ~ 

Since the operations of integration with respect to z and differentiation with respect to r are commutative, 
the transform of Eq. (14) assumes the form 

d~U dU 
r dr ~ + ~rr 4- PAU ~ a(r) + Asq~(r). (15) 
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Equat ion (15) is  a p a r t i c u l a r  case  of a nonhomogeneous  B e s s e l  equation,  i ts so lut ion being r e p r e s e n t a b l e  
in t e r m s  of cy l ind r i ca l  funct ions  

_ _ j '  
U (r, s) -= y1Jo (2s ~/ Ar ) + YzNo (2s V At) + Jo Jo ~ ' r F (r, s) dr-k  No 

s I. A (JoN1 - -YlNo)  ) 
Jo] /  r F(r,s)dr (16) 

s V A (J,N o -  JoN1) 

w h e r e  y~ and ]/2 a r e  a r b i t r a r y  cons tan ts ,  d e t e r m i n a b l e  f r o m  the condi t ions  vz(R, z) : 0, i .e . ,  U(R, s) = 0, 
and a s s i g n m e n t  of the speed  of mot ion  of the  fluid co re ,  i .e . ,  fo r  

r ro = 2% - -  v~ ~ Vo, 

whe re  v 0 is  the given speed.  In the  t r a n s f o r m  space  this  condi t ion a s s u m e s  the f o r m  

U (r o, s) = j '  exp (--  sz) vodz -- v~ ' 

0 

? (r, s) = a (r) + As~p (r). 

Thus  fo r  d e t e r m i n i n g  Y1 and "Y2 we have the s y s t e m  of equat ions  

O = Y ~ J o ( 2 S ~ / A R ) ' k - y 2 N o ( 2 s ] / A R )  + Jo ~ sJ~ a - -  JaNo) ~=R -b N~  s VJ~ ~=n' 

whence  

v-9-~ = u (2s ~ Ar o ) -b Y2No (2s ]flAr o ) 4-, Jo f 
Jo ] /  r ? (r, s) dr 

s ] / -A(JoN 1 - -  J1No) 

j =  ; -  

5]2 

Y~ = Jo (2s ] / ~  ) N O (2s VAR -) ' 

I Jo (2s ]/~oo) No (2s ] / ~ - o  ) 

Jo (2s ] / ~ )  - -  Jof Ir=R - -  No j"/~=R 
1 2 

So(2S ; 7o) So J .... --No.If .... 
2 2 

Jo (2s V A R  ) N o (2s V AR) 

So (2s Y Aro) No(2S V o) 

Jo ] / 7  k" (r, s) dr r=r~ 
s ]/-A(J1No - -  JoN1) ' 

Finding the  or ig ina l  funct ion in the gene ra l  case  is  a v e r y  involved p rob lem and obtaining the final  
so lut ion to  a spec i f i c  p rob l em is beyond the  scope  of this paper .  

N O T A T I O N  

YI. 0 

~0 
h 

T 0 

z, e ,  r 
VZ,  V(p,  V r 

is  the s t r e s s - d e v i a t o r  t enso r ;  
is  the dev ia to r  of d e f o r m a t i o n  t ensor ;  
is  the in tens i ty  of d e f o r m a t i o n  r a t e s ;  
is  the p las t i c  v i scos i ty ;  
is  the l imi ted  s h e a r  s t r e s s ;  
a r e  the cy l ind r i ca l  coo rd ina t e s ;  
a r e  the  ve loc i ty  componen t s  in cy l indr ica l  coord ina te s ;  
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a 

F 

erz, e~z . . 
P 

P 
0-0 
J, N 

is the acceleration vector; 
is the force vector; 
are the components of deformation rate tensor in cylindrical coordinates; 
is the pressure; 
is the density of the medium; 
indicates correspondence of functions in the Laplace transformation [4]; 
are the cylindrical Bessel and Neumann functions. 
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